论文标题

蛋白质模型质量评估的分子图上的球形卷积

Spherical convolutions on molecular graphs for protein model quality assessment

论文作者

Igashov, Ilia, Pavlichenko, Nikita, Grudinin, Sergei

论文摘要

对3D对象的处理信息需要稳定的输入数据的刚体变换,特别是旋转的方法。在图像处理任务中,卷积神经网络使用旋转等级操作实现此属性。但是,与图像相反,图通常具有不规则的拓扑结构。这使得在这些结构上定义旋转等量子卷积操作变得具有挑战性。在这项工作中,我们提出了处理代表分子图的蛋白质的3D模型的球形图卷积网络(S-GCN)。在蛋白质分子中,单个氨基酸具有共同的拓扑元素。这使我们能够明确将每个氨基酸与局部坐标系相关联,并构建基于图节点之间的角度信息操作的旋转 - 等级球形过滤器。在蛋白质模型质量评估问题的框架内,我们证明了所提出的球形卷积方法显着提高了模型评估的质量,而不是标准消息通讯方法。正如我们在结构预测(CASP)基准的批判性评估中所证明的那样,它也与最新方法相媲美。该提出的技术仅在蛋白质3D模型的几何特征上运行。这使其通用且适用于任何其他几何学习任务,在该任务中,图形结构允许构建局部坐标系统。

Processing information on 3D objects requires methods stable to rigid-body transformations, in particular rotations, of the input data. In image processing tasks, convolutional neural networks achieve this property using rotation-equivariant operations. However, contrary to images, graphs generally have irregular topology. This makes it challenging to define a rotation-equivariant convolution operation on these structures. In this work, we propose Spherical Graph Convolutional Network (S-GCN) that processes 3D models of proteins represented as molecular graphs. In a protein molecule, individual amino acids have common topological elements. This allows us to unambiguously associate each amino acid with a local coordinate system and construct rotation-equivariant spherical filters that operate on angular information between graph nodes. Within the framework of the protein model quality assessment problem, we demonstrate that the proposed spherical convolution method significantly improves the quality of model assessment compared to the standard message-passing approach. It is also comparable to state-of-the-art methods, as we demonstrate on Critical Assessment of Structure Prediction (CASP) benchmarks. The proposed technique operates only on geometric features of protein 3D models. This makes it universal and applicable to any other geometric-learning task where the graph structure allows constructing local coordinate systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源