论文标题
在Hermitian对称空间和BPS状态上,较高的衍生化超对称非线性Sigma模型
Higher Derivative Supersymmetric Nonlinear Sigma Models on Hermitian Symmetric Spaces, and BPS States Therein
论文作者
论文摘要
我们在Hermitian对称空间上制定了四维$ \ MATHCAL {N} = 1 $ supersymmetric sigma Sigma模型,具有较高的衍生术语,没有辅助场问题和Ostrogradski的幽灵,如guaug linear sigma模型。然后,我们研究Bogomol'nyi-Prasad-Sommerfield方程,以保留1/2或1/4的超对称性。我们发现有不同的分支,我们称之为规范($ f = 0 $)和非典型的($ f \ neq 0 $)分支,与辅助字段$ f $ in Mathal Multiplets相关联。 For the ${\mathbb C}P^N$ model, we obtain a supersymmetric ${\mathbb C}P^N$ Skyrme-Faddeev model in the canonical branch while in the non-canonical branch the Lagrangian consists of solely the ${\mathbb C}P^N$ Skyrme-Faddeev term without a canonical kinetic term.这些结构可以扩展到Grassmann歧管$ g_ {m,n} = su(m)/[su(m-n)\ times su(n)\ times u(1)] $。对于其他Hermitian对称空间,例如二次表面$ q^{n-2} = so(n)/[so(n-2)\ times u(1)])$,我们对将它们嵌入$ {\ Mathbb C} p^{n-1} $或Grassmann clastord $或Grassmann clistold off-Term(Holomorphic)约束。我们发现这些约束在规范分支中是一致的,但是在动力学场上产生了其他约束,从而降低了非经典分支中的目标空间。
We formulate four-dimensional $\mathcal{N} = 1$ supersymmetric nonlinear sigma models on Hermitian symmetric spaces with higher derivative terms, free from the auxiliary field problem and the Ostrogradski's ghosts, as gauged linear sigma models. We then study Bogomol'nyi-Prasad-Sommerfield equations preserving 1/2 or 1/4 supersymmetries. We find that there are distinct branches, that we call canonical ($F=0$) and non-canonical ($F\neq 0$) branches, associated with solutions to auxiliary fields $F$ in chiral multiplets. For the ${\mathbb C}P^N$ model, we obtain a supersymmetric ${\mathbb C}P^N$ Skyrme-Faddeev model in the canonical branch while in the non-canonical branch the Lagrangian consists of solely the ${\mathbb C}P^N$ Skyrme-Faddeev term without a canonical kinetic term. These structures can be extended to the Grassmann manifold $G_{M,N} = SU(M)/[SU(M-N)\times SU(N) \times U(1)]$. For other Hermitian symmetric spaces such as the quadric surface $Q^{N-2}=SO(N)/[SO(N-2) \times U(1)])$, we impose F-term (holomorphic) constraints for embedding them into ${\mathbb C}P^{N-1}$ or Grassmann manifold. We find that these constraints are consistent in the canonical branch but yield additional constraints on the dynamical fields thus reducing the target spaces in the non-canonical branch.