论文标题

基于基于差异的经验可能性ABC方法

On a Variational Approximation based Empirical Likelihood ABC Method

论文作者

Chaudhuri, Sanjay, Ghosh, Subhroshekhar, Nott, David J., Pham, Kim Cuc

论文摘要

通过生成过程指定了许多科学动机的统计模型。但是,在某些情况下,可能不可能通过分析这些模型写下这些可能性。近似贝叶斯计算(ABC)方法允许在这种情况下推断贝叶斯推断。尽管如此,这些程序通常是计算密集型的。最近,文献中已经提出了基于计算有吸引力的基于经验可能性的ABC方法。所有这些方法都依赖于几个合适的分析估计方程的可用性,这有时是有问题的。在本文中,我们提出了一种易于使用的经验可能性ABC方法。首先,通过使用变分近似参数作为动机,我们表明目标对数 - 形象可以作为预期的关节对数可能性的总和和数据产生密度的差分熵的总和。然后,通过经验可能性估算预期的对数可能性,其中所需的唯一输入是摘要统计量的选择,观察到的值以​​及模拟模型下任何参数值的所选摘要统计数据的能力。使用传统方法从模拟摘要中估算差分熵。该方法建立了后验一致性,我们将详细讨论所需数量的模拟摘要的界限。在各种示例中探讨了所提出的方法的性能。

Many scientifically well-motivated statistical models in natural, engineering, and environmental sciences are specified through a generative process. However, in some cases, it may not be possible to write down the likelihood for these models analytically. Approximate Bayesian computation (ABC) methods allow Bayesian inference in such situations. The procedures are nonetheless typically computationally intensive. Recently, computationally attractive empirical likelihood-based ABC methods have been suggested in the literature. All of these methods rely on the availability of several suitable analytically tractable estimating equations, and this is sometimes problematic. We propose an easy-to-use empirical likelihood ABC method in this article. First, by using a variational approximation argument as a motivation, we show that the target log-posterior can be approximated as a sum of an expected joint log-likelihood and the differential entropy of the data generating density. The expected log-likelihood is then estimated by an empirical likelihood where the only inputs required are a choice of summary statistic, it's observed value, and the ability to simulate the chosen summary statistics for any parameter value under the model. The differential entropy is estimated from the simulated summaries using traditional methods. Posterior consistency is established for the method, and we discuss the bounds for the required number of simulated summaries in detail. The performance of the proposed method is explored in various examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源