论文标题
在太阳凉爽气氛中进行热爆炸的磁重新连接模型
A Magnetic Reconnection model for Hot Explosions in the Cool Atmosphere of the Sun
论文作者
论文摘要
紫外线爆发和埃勒曼炸弹是在新兴通量区域的低太阳大气中观察到的瞬态亮光。观察结果发现了同时和颞EB和紫外线爆发,它们的形成机制仍然不清楚。在这些事件中,温度较高的多热组件挑战了我们对低太阳大气中磁重新连接和加热机制的理解。我们研究了新兴和背景磁场之间的磁重新连接。初始血浆参数基于C7大气模型。在当前具有致密光球等离子体的当前纸出现到太阳表面上方0.5美元的$ 0.5 $毫米之后,出现了浆液不稳定性。血浆相互碰撞并相互结合,这使得在湍流重新连接区域混合的具有不同密度和温度的等离子体。因此,对应于紫外排放和对应于其他WaveRengHT的排放的较冷的等离子体可以一起移动并发生在相同的高度上。同时,热湍流结构基本上集中于$ 0.4 $毫米以上,而凉爽的等离子体则将其延伸至较低的高度到当前纸的底部。这些现象与Chen等人的观察结果一致。 2019年,APJL。合成的Si IV线配置文件与紫外线突发中观察到的相似之处,该线配置文件的增强机翼可以扩展到$ 100 $ km s $^{ - 1} $。在不同分辨率的数值结果中,这些差异是显着的,这表明现实的磁扩散率对于揭示这些重新连接事件中的精细结构和现实等离子体加热至关重要。我们的结果还表明,在温度最低区域周围低染色体中的双极性扩散导致的重新连接加热是不有效的。
UV bursts and Ellerman bombs are transient brightenings observed in the low solar atmospheres of emerging flux regions. Observations have discovered the cospatial and cotemporal EBs and UV bursts, and their formation mechanisms are still not clear. The multi-thermal components with a large temperature span in these events challenge our understanding of magnetic reconnection and heating mechanisms in the low solar atmosphere. We have studied magnetic reconnection between the emerging and background magnetic fields. The initial plasma parameters are based on the C7 atmosphere model. After the current sheet with dense photosphere plasma is emerged to $0.5$ Mm above the solar surface, plasmoid instability appears. The plasmoids collide and coalesce with each other, which makes the plasmas with different densities and temperatures mixed up in the turbulent reconnection region. Therefore, the hot plasmas corresponding to the UV emissions and colder plasmas corresponding to the emissions from other wavelenghts can move together and occur at about the same height. In the meantime, the hot turbulent structures basically concentrate above $0.4$ Mm, whereas the cool plasmas extend to much lower heights to the bottom of the current sheet. These phenomena are consistent with the observations of Chen et al. 2019, ApJL. The synthesized Si IV line profiles are similar to the observed one in UV bursts, the enhanced wing of the line profiles can extend to about $100$ km s$^{-1}$. The differences are significant among the numerical results with different resolutions, which indicate that the realistic magnetic diffusivity is crucial to reveal the fine structures and realistic plasmas heating in these reconnection events. Our results also show that the reconnection heating contributed by ambipolar diffusion in the low chromosphere around the temperature minimum region is not efficient.