论文标题
在两阶段随机实验中直接和溢出效应的统计推断和功率分析
Statistical Inference and Power Analysis for Direct and Spillover Effects in Two-Stage Randomized Experiments
论文作者
论文摘要
当一个单位的结果可能受到同一群集中其他单位的治疗分配的影响时,两阶段的随机实验正在成为因果推断越来越流行的实验设计。在本文中,我们为两阶段随机实验的统计推断和功率分析的通用工具提供了方法学框架。在基于随机化的框架下,我们考虑了感兴趣的新直接效应以及文献中研究的平均直接和溢出效应的估计。我们在一般环境中提供了这些因果量及其保守差异估计器的无偏估计量。使用这些结果,我们开发假设测试程序并得出样本量公式。从理论上讲,我们将两阶段的随机设计与完全随机和群集随机设计进行比较,这代表了两个限制设计。最后,我们进行了模拟研究,以评估样本量公式的经验性能。对于经验说明,提出的方法将其应用于印度国家健康保险计划的随机评估。可以使用开源软件包实施提出的方法。
Two-stage randomized experiments are becoming an increasingly popular experimental design for causal inference when the outcome of one unit may be affected by the treatment assignments of other units in the same cluster. In this paper, we provide a methodological framework for general tools of statistical inference and power analysis for two-stage randomized experiments. Under the randomization-based framework, we consider the estimation of a new direct effect of interest as well as the average direct and spillover effects studied in the literature. We provide unbiased estimators of these causal quantities and their conservative variance estimators in a general setting. Using these results, we then develop hypothesis testing procedures and derive sample size formulas. We theoretically compare the two-stage randomized design with the completely randomized and cluster randomized designs, which represent two limiting designs. Finally, we conduct simulation studies to evaluate the empirical performance of our sample size formulas. For empirical illustration, the proposed methodology is applied to the randomized evaluation of the Indian national health insurance program. An open-source software package is available for implementing the proposed methodology.