论文标题

理性切结的线性独立性

Linear independence of rationally slice knots

论文作者

Hom, Jennifer, Kang, Sungkyung, Park, JungHwan, Stoffregen, Matthew

论文摘要

如果$ s^3 $的结在理性同源球中界限磁盘,则在理性上切片。我们给出了一个无限的理性切成片,它们在结中的一致性组中是线性独立的。特别是,我们的例子都是无限顺序。所有先前已知的理性切合结的例子均为订单二。

A knot in $S^3$ is rationally slice if it bounds a disk in a rational homology ball. We give an infinite family of rationally slice knots that are linearly independent in the knot concordance group. In particular, our examples are all infinite order. All previously known examples of rationally slice knots were order two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源