论文标题

$ p $变化及其应用的模量

The modulus of $p$-variation and its applications

论文作者

Esslamzadeh, Gholam Hossein, Goodarzi, Milad Moazami, Hormozi, Mahdi, Lind, Martin

论文摘要

在本说明中,我们介绍了$ p $变量的模量的概念,以实现真实变量的函数,并表明它至少有两个重要问题,即,傅立叶系列的统一收敛和某些$ k $ unctionals的计算。要更具体地说,让$ν$是一个非核心的正实数凹面顺序和$ 1 \ leq p <\ infty $。使用我们的新工具,我们首先定义一个Banach空间,表示$ v_p [ν] $,该空间介于Wiener类$ bv_p $和$ l^\ infty $之间,并证明它满足了Helly-type选择原则。我们还证明,可以根据$ p $变量的模量表示,可以表达夫妇$(l^\ infty,bv_p)$的Peetre $ k $功能。接下来,我们获得了同等的尖锐条件,以在每个类别中的所有功能的傅立叶系列均匀收敛$ v_p [ν] $和$ h^ω\ cap v_p [ν] $中,其中$ω$是连续性的模量,$ h^ω$表示其相关的lipschitz类。最后,我们将最佳的嵌入到$ v_p [ν] $中的$ v_p [ν] $的各个函数函数的函数。作为后者结果的副产品,我们推断出某些对称序列空间的嵌入结果。

In this note, we introduce the notion of modulus of $p$-variation for a function of a real variable, and show that it serves in at least two important problems, namely, the uniform convergence of Fourier series and computation of certain $K$-functionals. To be more specific, let $ν$ be a nondecreasing concave sequence of positive real numbers and $1\leq p<\infty$. Using our new tool, we first define a Banach space, denoted $V_p[ν]$, that is intermediate between the Wiener class $BV_p$ and $L^\infty$, and prove that it satisfies a Helly-type selection principle. We also prove that the Peetre $K$-functional for the couple $(L^\infty,BV_p)$ can be expressed in terms of the modulus of $p$-variation. Next, we obtain equivalent sharp conditions for the uniform convergence of the Fourier series of all functions in each of the classes $V_p[ν]$ and $H^ω\cap V_p[ν]$, where $ω$ is a modulus of continuity and $H^ω$ denotes its associated Lipschitz class. Finally, we establish optimal embeddings into $V_p[ν]$ of various spaces of functions of generalized bounded variation. As a by-product of these latter results, we infer embedding results for certain symmetric sequence spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源