论文标题
摩擦驱动的绊倒机器人的机车和控制
Locomotion and Control of a Friction-Driven Tripedal Robot
论文作者
论文摘要
这封信考虑了对径向对称的Triped摩擦驱动机器人的控制。该机器人设有3台伺服电动机,该电动机安装在距质量中心7厘米的3D印刷机箱上,分开120度。这些电动机驱动四肢,从而在体内赋予摩擦反应力。在均匀摩擦表面进行的实验观察结果验证了机器人运动的数学模型。该模型用于创建一个步态图,该步态图具有瞬时全方向控制。我们使用高架跟踪摄像头的实时反馈展示了线条。比较比例综合误差补偿性能与矩形课程上的基本位置更新过程进行了比较。控制器将路径误差降低了约$ 46 \%$。错误补偿器还能够纠正高批量工业风扇产生的空气动力学干扰,平均流速为$ 5.5ms^{ - 1} $,相对于基本位置更新过程,将路径错误降低了$ 65 \%$。
This letter considers control of a radially symmetric tripedal friction-driven robot. The robot features 3 servo motors mounted on a 3-D printed chassis 7 cm from the center of mass and separated 120 degrees. These motors drive limbs, which impart frictional reactive forces on the body. Experimental observations performed on a uniform friction surface validated a mathematical model for robot motion. This model was used to create a gait map, which features instantaneous omni-directional control. We demonstrated line following using live feedback from an overhead tracking camera. Proportional-Integral error compensation performance was compared to a basic position update procedure on a rectangular course. The controller reduced path error by approximately $46\%$. The error compensator is also able to correct for aerodynamic disturbances generated by a high-volume industrial fan with a mean flow speed of $5.5ms^{-1}$, reducing path error by $65\%$ relative to the basic position update procedure.