论文标题
中间事件使用生存树合奏触发的动态风险预测
Dynamic Risk Prediction Triggered by Intermediate Events Using Survival Tree Ensembles
论文作者
论文摘要
随着电子健康记录和注册表数据库中大量数据的可用性,包括时变的患者信息以改善风险预测,引起了人们的关注。为了利用随着时间的推移的预测信息的日益增长的数量,我们使用生存树合奏开发了地标预测的统一框架,在新信息可用时可以执行更新的预测。与传统的地标预测(随着固定地标时间)相比,我们的方法允许特定于主体和中间临床事件触发地标时间。此外,非参数方法规定了不同地标时间的模型不兼容的棘手问题。在我们的框架中,纵向预测因子和事件时间结果都经过正确的审查,因此无法直接应用基于树的方法。为了应对分析挑战,我们通过平均Martingale估算各个树木的方程来提出一个基于风险的集合程序。进行了广泛的仿真研究以评估我们方法的性能。该方法应用于囊性纤维化患者登记册(CFFPR)数据,以对囊性纤维化患者的肺部疾病进行动态预测,并确定重要的预后因素。
With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to improve risk prediction has attracted great attention. To exploit the growing amount of predictor information over time, we develop a unified framework for landmark prediction using survival tree ensembles, where an updated prediction can be performed when new information becomes available. Compared to conventional landmark prediction with fixed landmark times, our methods allow the landmark times to be subject-specific and triggered by an intermediate clinical event. Moreover, the nonparametric approach circumvents the thorny issue of model incompatibility at different landmark times. In our framework, both the longitudinal predictors and the event time outcome are subject to right censoring, and thus existing tree-based approaches cannot be directly applied. To tackle the analytical challenges, we propose a risk-set-based ensemble procedure by averaging martingale estimating equations from individual trees. Extensive simulation studies are conducted to evaluate the performance of our methods. The methods are applied to the Cystic Fibrosis Patient Registry (CFFPR) data to perform dynamic prediction of lung disease in cystic fibrosis patients and to identify important prognosis factors.