论文标题

感知系统的监视和诊断性

Monitoring and Diagnosability of Perception Systems

论文作者

Antonante, Pasquale, Spivak, David I., Carlone, Luca

论文摘要

感知是机器人技术和自动驾驶系统(例如自动驾驶车辆)高融合应用的关键组成部分。在这些应用中,感知系统的失败可能会使人类生命处于危险之中,并且这些技术的广泛采用需要开发方法来保证和监控安全操作。尽管感知系统的重要性至关重要,但目前尚无系统级监视的正式方法。在这项工作中,我们提出了一个数学模型,用于在感知系统中进行运行时监视和故障检测和识别。为了实现这一目标,我们与多处理器系统中有关诊断性的文献建立了联系,并将其推广到以随着时间的推移相互作用的异质输出的模块。由此产生的时间诊断图(i)提供了一个框架,以推理感知输出的一致性 - 跨模块和随着时间的流逝 - 从而实现故障检测,(ii)允许我们为可以在给定的感知系统中独立识别的最大故障数量建立正式保证,并且(iii)启用了有效的algerith dessiveive forsive dessive nefifice deffice algerith的设计。我们使用LGSVL自动驾驶模拟器和Apollo Auto自主软件堆栈在现实的模拟中演示我们的监视系统,并将其演示在现实的模拟中,并表明Persys能够在挑战性场景中检测到故障,包括在最近几年引起的自动驾驶汽车行动的场景(包括在近期造成自动驾驶汽车行动),并在5个范围内进行了纠正,并在计算中置于一定范围(<MES),并在<MSAL上进行了计算(<MS),并在<MES中<contectation of thectation thecation(< 中央处理器)。

Perception is a critical component of high-integrity applications of robotics and autonomous systems, such as self-driving vehicles. In these applications, failure of perception systems may put human life at risk, and a broad adoption of these technologies requires the development of methodologies to guarantee and monitor safe operation. Despite the paramount importance of perception systems, currently there is no formal approach for system-level monitoring. In this work, we propose a mathematical model for runtime monitoring and fault detection and identification in perception systems. Towards this goal, we draw connections with the literature on diagnosability in multiprocessor systems, and generalize it to account for modules with heterogeneous outputs that interact over time. The resulting temporal diagnostic graphs (i) provide a framework to reason over the consistency of perception outputs -- across modules and over time -- thus enabling fault detection, (ii) allow us to establish formal guarantees on the maximum number of faults that can be uniquely identified in a given perception system, and (iii) enable the design of efficient algorithms for fault identification. We demonstrate our monitoring system, dubbed PerSyS, in realistic simulations using the LGSVL self-driving simulator and the Apollo Auto autonomy software stack, and show that PerSyS is able to detect failures in challenging scenarios (including scenarios that have caused self-driving car accidents in recent years), and is able to correctly identify faults while entailing a minimal computation overhead (< 5 ms on a single-core CPU).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源