论文标题
定期驱动的非热su-schrieffer-Heeger模型的拓扑方面
Topological aspects of periodically driven non-Hermitian Su-Schrieffer-Heeger model
论文作者
论文摘要
研究了由周期性外部潜力驱动的Su-Schrieffer-Heeger模型的非富列概括,并探索了其拓扑特征。我们发现,双期正常的几何相充当拓扑指数,很好地捕获了零模式的存在/不存在。观察到该模型显示出琐碎和非平凡的绝缘阶段以及拓扑非平凡的M $ {Ö} $ BIUS金属相。驱动场振幅显示为导致该模型拓扑相变的控制参数。尽管系统在金属相中显示零模式,而不是非平凡的绝缘体相,但金属零模式并不强大,如在绝缘阶段所示。我们进一步发现,与非平凡的绝缘阶段相比,零模式的能量作为M $ {Ö} $ BIUS金属相中的二聚体数量的函数缓慢收敛到零。
A non-Hermitian generalization of the Su-Schrieffer-Heeger model driven by a periodic external potential is investigated, and its topological features are explored. We find that the bi-orthonormal geometric phase acts as a topological index, well capturing the presence/absence of the zero modes. The model is observed to display trivial and non-trivial insulator phases and a topologically non-trivial M${ö}$bius metallic phase. The driving field amplitude is shown to be a control parameter causing topological phase transitions in this model. While the system displays zero modes in the metallic phase apart from the non-trivial insulator phase, the metallic zero modes are not robust, as the ones found in the insulating phase. We further find that zero modes' energy converges slowly to zero as a function of the number of dimers in the M${ö}$bius metallic phase compared to the non-trivial insulating phase.