论文标题

锥形分级波导中光亮相似的配置熵

Configurational Entropy of Optical Bright Similariton in Tapered Graded-Index Waveguide

论文作者

Thakur, Pooja, Gleiser, Marcelo, Kumar, Anil, Gupta, Rama

论文摘要

构型熵(CE)由一系列熵指标组成,用于描述相对于一组参数的空间定位函数的形状复杂性。我们获得了以广义非线性Schrödinger方程建模的锥形分级光学波导中相似波的相似波的差分构型熵(DCE)。已经发现,对于位于一定范围内的相似宽度,DCE沿着有效传播变量$ζ(t)$演变而达到最小饱和值。特别是,对于较低的宽度值,我们显示的饱和度与DCE的全局最小值相对应。如此低的熵值会导致动量模式的最小分散,因为相似的波沿锥形分级 - 索引波导传播,并且在指导其设计方面应该很重要。

Configurational entropy (CE) consists of a family of entropic measures of information used to describe the shape complexity of spatially-localized functions with respect to a set of parameters. We obtain the Differential Configurational Entropy (DCE) for similariton waves traveling in tapered graded-index optical waveguides modeled by a generalized nonlinear Schrödinger equation. It is found that for similariton's widths lying within a certain range, DCE attains minimum saturation values as the nonlinear wave evolves along the effective propagation variable $ζ(t)$. In particular, saturation is achieved earlier for lower values of the width, which we show correspond to global minima of the DCE. Such low entropic values lead to minimum dispersion of momentum modes as the similariton waves propagate along tapered graded-index waveguides, and should be of importance in guiding their design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源