论文标题

分类分布的基于分区的相似性

A partition-based similarity for classification distributions

论文作者

Helm, Hayden S., Mehta, Ronak D., Duderstadt, Brandon, Yang, Weiwei, White, Christoper M., Geisa, Ali, Vogelstein, Joshua T., Priebe, Carey E.

论文摘要

在本文中,我们定义了分类分布之间相似性的度量,既是从统计模式识别的角度原则性的,又是从机器学习从业人员的角度使用的。特别是,我们提出了一种称为任务相似性的分类分布的新颖相似性,该性量化了源分布的最佳最佳最佳表示形式在应用于与目标分布相关的推理时执行。任务相似性的定义允许对对抗和正交分布的自然定义。我们重点介绍了(普遍)一致的决策规则引起的表示形式的属性,并在模拟中证明了任务相似性的经验估计是为推论部署的决策规则的函数。我们证明,对于给定的目标分布,候选源分布的转移效率和语义相似性都与经验任务相似性相关。

Herein we define a measure of similarity between classification distributions that is both principled from the perspective of statistical pattern recognition and useful from the perspective of machine learning practitioners. In particular, we propose a novel similarity on classification distributions, dubbed task similarity, that quantifies how an optimally-transformed optimal representation for a source distribution performs when applied to inference related to a target distribution. The definition of task similarity allows for natural definitions of adversarial and orthogonal distributions. We highlight limiting properties of representations induced by (universally) consistent decision rules and demonstrate in simulation that an empirical estimate of task similarity is a function of the decision rule deployed for inference. We demonstrate that for a given target distribution, both transfer efficiency and semantic similarity of candidate source distributions correlate with empirical task similarity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源