论文标题

共享图像重建的基于能量的模型

Shared Prior Learning of Energy-Based Models for Image Reconstruction

论文作者

Pinetz, Thomas, Kobler, Erich, Pock, Thomas, Effland, Alexander

论文摘要

我们为图像重建提供了一个新颖的基于学习的框架,该框架是专门为培训而无需地面真相数据而设计的,该框架具有三个主要的构件:基于能量的学习,基于补丁的Wasserstein损失功能以及共享的先前学习。在基于能量的学习中,在均值场最佳控制问题中计算了由学习数据保真度和数据驱动的正常化程序组成的能量功能的参数。在没有地面真相数据的情况下,我们将损失功能更改为基于斑块的Wasserstein功能,其中将输出图像的局部统计数据与未腐败的参考贴片进行了比较。最后,在共享的先前学习中,同时通过共享的正规器参数同时优化了两个最佳控制问题,以进一步增强无监督的图像重建。我们得出了梯度流的几个时间离散化方案,并在MOSCO收敛方面验证了它们的一致性。在众多数值实验中,我们证明了所提出的方法为各种图像重建应用产生最新结果 - 即使没有地面真相图像可用于培训。

We propose a novel learning-based framework for image reconstruction particularly designed for training without ground truth data, which has three major building blocks: energy-based learning, a patch-based Wasserstein loss functional, and shared prior learning. In energy-based learning, the parameters of an energy functional composed of a learned data fidelity term and a data-driven regularizer are computed in a mean-field optimal control problem. In the absence of ground truth data, we change the loss functional to a patch-based Wasserstein functional, in which local statistics of the output images are compared to uncorrupted reference patches. Finally, in shared prior learning, both aforementioned optimal control problems are optimized simultaneously with shared learned parameters of the regularizer to further enhance unsupervised image reconstruction. We derive several time discretization schemes of the gradient flow and verify their consistency in terms of Mosco convergence. In numerous numerical experiments, we demonstrate that the proposed method generates state-of-the-art results for various image reconstruction applications--even if no ground truth images are available for training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源