论文标题
通过深入学习的联合空间控制
Joint Space Control via Deep Reinforcement Learning
论文作者
论文摘要
控制机器人操纵器的主要方法使用手工制作的微分方程利用某种形式的逆运动学 /动力学。我们提出了一个简单,多功能的联合控制器,完全用微分方程分配。通过无模型增强学习训练的深度神经网络,用于从任务空间到关节空间进行映射。实验表明该方法能够达到与传统方法相似的误差,同时通过自动处理冗余,关节限制和加速 /减速轮廓来大大简化该过程。扩展了基本技术,以避免通过增加有关最近障碍的信息来增加网络的输入。通过模拟和真实的机器人在模拟机器人中通过SIM到现实的策略传递显示了结果。我们表明,在模拟和现实世界中,可以通过适度的训练来实现次级中心精度。
The dominant way to control a robot manipulator uses hand-crafted differential equations leveraging some form of inverse kinematics / dynamics. We propose a simple, versatile joint-level controller that dispenses with differential equations entirely. A deep neural network, trained via model-free reinforcement learning, is used to map from task space to joint space. Experiments show the method capable of achieving similar error to traditional methods, while greatly simplifying the process by automatically handling redundancy, joint limits, and acceleration / deceleration profiles. The basic technique is extended to avoid obstacles by augmenting the input to the network with information about the nearest obstacles. Results are shown both in simulation and on a real robot via sim-to-real transfer of the learned policy. We show that it is possible to achieve sub-centimeter accuracy, both in simulation and the real world, with a moderate amount of training.