论文标题
基于自适应力的机器人控制
Adaptive Force-based Control for Legged Robots
论文作者
论文摘要
自适应控制可以解决控制系统中的模型不确定性。但是,它是用于跟踪控制的初步设计的。四足机器人控制的最新进展表明,力控制可以有效地实现敏捷和强大的运动。在本文中,我们为腿部机器人提供了一个新颖的基于自适应力的控制框架。我们在建议的方法中介绍了一种新的体系结构,将自适应控制纳入二次编程(QP)力控制中。由于我们的方法是基于力控制的,因此它还保留了基线框架的优势,例如对不均匀地形,可控摩擦约束或软影响的稳健性。我们的方法在模拟和硬件实验中都得到了成功验证。虽然基线QP控件显示出具有小负载的身体跟踪误差的显着降解,但我们提出的基于自适应力的控制可以使12千克单位A1机器人在崎rough地形上行走,同时承载高达6公斤的重量(占机器人重量的50%)。当带有四个腿的站立时,我们提出的自适应控制甚至可以使机器人在机器人高度中携带高达11千克的负载(机器人重量的92%),较小的跟踪误差。
Adaptive control can address model uncertainty in control systems. However, it is preliminarily designed for tracking control. Recent advancements in the control of quadruped robots show that force control can effectively realize agile and robust locomotion. In this paper, we present a novel adaptive force-based control framework for legged robots. We introduce a new architecture in our proposed approach to incorporate adaptive control into quadratic programming (QP) force control. Since our approach is based on force control, it also retains the advantages of the baseline framework, such as robustness to uneven terrain, controllable friction constraints, or soft impacts. Our method is successfully validated in both simulation and hardware experiments. While the baseline QP control has shown a significant degradation in the body tracking error with a small load, our proposed adaptive force-based control can enable the 12-kg Unitree A1 robot to walk on rough terrains while carrying a heavy load of up to 6 kg (50% of the robot weight). When standing with four legs, our proposed adaptive control can even allow the robot to carry up to 11 kg of load (92% of the robot weight) with less than 5-cm tracking error in the robot height.