论文标题
纳米颗粒的惯性和粘性飞轮传感
Inertial and viscous flywheel sensing of nanoparticles
论文作者
论文摘要
旋转动力学通常会挑战物理直觉,同时实现独特的实现,从陀螺仪的转子保持其取向,而不论外缘式外g,到一个网球球拍,在空气中朝上扔到空中时,它在其手柄周围旋转。在可以用原子精度测量质量的惯性质量传感的背景下,旋转动力学通常被认为是阻碍并发症阻碍测量的解释。在这里,我们利用微流体设备的旋转动力学来开发惯性谐振剂传感的新模态。将理论与实验结合在一起,我们表明这种方式通常在对其密度不敏感的同时测量粒子的体积。矛盾的是,颗粒密度仅在流体粘度在惯性上占主导地位时才会出现。我们通过粘度驱动的流体和粒子之间的流体动力耦合来解释这种悖论,从而激活粒子的旋转惯性,将其转化为粘性飞轮。现在,这种方式可以使用单个高通量测量值同时测量流体颗粒体积和质量。
Rotational dynamics often challenge physical intuition while enabling unique realizations, from the rotor of a gyroscope that maintains its orientation regardless of the outer gimbals, to a tennis racket that rotates around its handle when tossed face-up in the air. In the context of inertial mass sensing, which can measure mass with atomic precision, rotational dynamics are normally considered a complication hindering measurement interpretation. Here, we exploit the rotational dynamics of a microfluidic device to develop a new modality in inertial resonant sensing. Combining theory with experiments, we show that this modality normally measures the volume of the particle while being insensitive to its density. Paradoxically, particle density only emerges when fluid viscosity becomes dominant over inertia. We explain this paradox via a viscosity-driven, hydrodynamic coupling between the fluid and the particle that activates the rotational inertia of the particle, converting it into a viscous flywheel. This modality now enables the simultaneous measurement of particle volume and mass in fluid, using a single, high-throughput measurement.