论文标题
从推文中识别抑郁症状:启用比喻语言的多任务学习框架
Identifying Depressive Symptoms from Tweets: Figurative Language Enabled Multitask Learning Framework
论文作者
论文摘要
现有关于使用社交媒体来得出用户心理健康状况的研究专注于抑郁症检测任务。但是,对于案例管理和转诊至精神科医生,医护人员需要实用且可扩展的抑郁症筛查和分类系统。这项研究旨在设计和评估决策支持系统(DSS),以可靠地通过在临床实践中通常使用的患者健康调查表(PHQ-9)来捕获用户推文中表达的细粒度抑郁症状,从而可靠地确定抑郁症的抑郁水平。从推文中对抑郁症状的可靠检测很具有挑战性,因为推文的280个字符限制激发了在发言中使用创意文物的使用,而象征性用法则有助于有效的表达。我们提出了一个新型的基于BERT的强大多任务学习框架,以使用比喻使用检测的辅助任务准确地识别抑郁症状。具体而言,我们提出的新型任务共享机制,共同任务意识关注,可以通过参数的软共享来自动选择BERT层和任务的最佳信息。我们的结果表明,建模象征性使用可以明显地提高模型的鲁棒性和可靠性,以区分抑郁症状。
Existing studies on using social media for deriving mental health status of users focus on the depression detection task. However, for case management and referral to psychiatrists, healthcare workers require practical and scalable depressive disorder screening and triage system. This study aims to design and evaluate a decision support system (DSS) to reliably determine the depressive triage level by capturing fine-grained depressive symptoms expressed in user tweets through the emulation of Patient Health Questionnaire-9 (PHQ-9) that is routinely used in clinical practice. The reliable detection of depressive symptoms from tweets is challenging because the 280-character limit on tweets incentivizes the use of creative artifacts in the utterances and figurative usage contributes to effective expression. We propose a novel BERT based robust multi-task learning framework to accurately identify the depressive symptoms using the auxiliary task of figurative usage detection. Specifically, our proposed novel task sharing mechanism, co-task aware attention, enables automatic selection of optimal information across the BERT layers and tasks by soft-sharing of parameters. Our results show that modeling figurative usage can demonstrably improve the model's robustness and reliability for distinguishing the depression symptoms.