论文标题

修改的MacDonald多项式和多人零范围过程:i

Modified Macdonald polynomials and the multispecies zero range process: I

论文作者

Ayyer, Arvind, Mandelshtam, Olya, Martin, James B.

论文摘要

在本文中,我们证明了一种新的组合公式,用于修改的MacDonald多项式$ \ wideTilde {h}_λ(x; q,t)$,这是由与统计机制相互作用粒子系统的相互作用理论的动机。该公式涉及一个新的统计量,称为tableaux填充物上的队列反转。该统计量与多行队列密切相关,后者最近用于为MacDonald多项式提供$P_λ(X; Q,T)$的公式。在情况下,$ q = 1 $和$ x =(1,1,\ dots,1)$,该公式也已被证明可以在环上计算称为多物种ASEP的粒子系统的固定概率,并且自然要问,在修改后的MacDonald polynomials和适当的统计机械学模型之间是否存在类似的连接。在这项工作的续集中,我们证明了这种连接,表明可以使用带有队列反转统计量的tableaux公式来计算多个彼此完全不对称的零范围过程(MTAZRP)的固定概率。此连接扩展到任意$ x =(x_1,\ dots,x_n)$; $ x_i $扮演MTAZRP站点依赖的跳跃率的角色。

In this paper we prove a new combinatorial formula for the modified Macdonald polynomials $\widetilde{H}_λ(X;q,t)$, motivated by connections to the theory of interacting particle systems from statistical mechanics. The formula involves a new statistic called queue inversions on fillings of tableaux. This statistic is closely related to the multiline queues which were recently used to give a formula for the Macdonald polynomials $P_λ(X;q,t)$. In the case $q=1$ and $X=(1,1,\dots,1)$, that formula had also been shown to compute stationary probabilities for a particle system known as the multispecies ASEP on a ring, and it is natural to ask whether a similar connection exists between the modified Macdonald polynomials and a suitable statistical mechanics model. In a sequel to this work, we demonstrate such a connection, showing that the stationary probabilities of the multispecies totally asymmetric zero-range process (mTAZRP) on a ring can be computed using tableaux formulas with the queue inversion statistic. This connection extends to arbitrary $X=(x_1,\dots, x_n)$; the $x_i$ play the role of site-dependent jump rates for the mTAZRP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源