论文标题

半综合加权最小值紧密连接的最佳舍入跨度子图

An Optimal Rounding for Half-Integral Weighted Minimum Strongly Connected Spanning Subgraph

论文作者

Hershkowitz, D Ellis, Kehne, Gregory, Ravi, R.

论文摘要

在加权最小连接的跨越子图(WMSCS)问题中,我们必须购买跨二弹纸的最低成本连接的最低成本连接。我们表明,WMSCSS的半综合线性程序(LP)解决方案可以有效地以乘以$ 1.5 $的成本为积分解决方案。这个舍入与半融合实例的已知$ 1.5 $完整性差距下限相匹配。更普遍地,我们表明,非零条目至少为$ f> 0 $的LP解决方案可以以$ 2- f $的乘法成本进行四舍五入。

In the weighted minimum strongly connected spanning subgraph (WMSCSS) problem we must purchase a minimum-cost strongly connected spanning subgraph of a digraph. We show that half-integral linear program (LP) solutions for WMSCSS can be efficiently rounded to integral solutions at a multiplicative $1.5$ cost. This rounding matches a known $1.5$ integrality gap lower bound for a half-integral instance. More generally, we show that LP solutions whose non-zero entries are at least a value $f > 0$ can be rounded at a multiplicative cost of $2 - f$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源