论文标题

在父亲XU归一化下形成条状拉普拉斯的极端特征值

Extremal Eigenvalues Of The Conformal Laplacian Under Sire-Xu Normalization

论文作者

Pérez-Ayala, Samuel

论文摘要

令$(m^n,g)$为dimension $ n \ ge 3 $的封闭式riemannian歧管。我们研究了$ k $ -th eigenvalue函数$ \ tilde g \ in [g] \mapstoλ_k(l _ {\ tilde g})$ in [g] \ mapstoλ_k(\ tilde g})$ s sire-xu提出的非数量归一化。我们讨论了在这种归一化下存在极端特征值的必要条件。另外,当$ k = 1 $时,我们讨论了一般存在问题。

Let $(M^n,g)$ be a closed Riemannian manifold of dimension $n\ge 3$. We study the variational properties of the $k$-th eigenvalue functional $\tilde g\in[g] \mapsto λ_k(L_{\tilde g})$ under a non-volume normalization proposed by Sire-Xu. We discuss necessary conditions for the existence of extremal eigenvalues under such normalization. Also, we discuss the general existence problem when $k=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源