论文标题
石墨烷中二维激子的光学偶极陷阱的第一原理研究
First Principles Study of the Optical Dipole Trap for Two-Dimensional Excitons in Graphane
论文作者
论文摘要
关于二维材料中激素的最新研究已广泛用于新型电子和光学设备的潜在用途。尤其是,需要量子自由度的复杂操纵技术。在本文中,我们提出了一种基于第一原理计算的二维宽间隙半导体的石墨烷中激子的光学偶极子陷阱的技术。我们开发了一种评估激子过渡偶极基质的第一个原理方法,并将其与密度功能理论和GW+BSE计算相结合。我们透露,在石墨烷中,巨大的激子结合能和类似Wannier的激子的大偶极矩使我们能够诱导MEV深度和$μ$ M宽度的偶极陷阱。这项工作开辟了一种基于新开发的数值强大的从头算计算的新方法来控制光线相互作用系统。
Recent studies on excitons in two-dimensional materials have been widely conducted for their potential usages for novel electronic and optical devices. Especially, sophisticated manipulation techniques of quantum degrees of freedom of excitons are demanded. In this paper we propose a technique of forming an optical dipole trap for excitons in graphane, a two-dimensional wide gap semiconductor, based on first principles calculations. We develop a first principles method to evaluate the exciton transition dipole matrix and combine it with the density functional theory and GW+BSE calculations. We reveal that in graphane the huge exciton binding energy and the large dipole moments of Wannier-like excitons enable us to induce the dipole trap of the order of meV depth and $μ$m width. This work opens a new way to control light-exciton interacting systems based on a newly developed numerically robust ab initio calculations.