论文标题

学习触觉定位的贝叶斯过滤模型

Learning Bayes Filter Models for Tactile Localization

论文作者

Kelestemur, Tarik, Keil, Colin, Whitney, John P., Platt, Robert, Padir, Taskin

论文摘要

本地化和跟踪机器人抓手的姿势是操纵任务的必要技能。但是,具有不精确运动模型(例如低成本臂)或具有世界未知世界坐标的操纵器(例如,较差的摄像头校准)无法找到抓地力相对于世界。在这种情况下,我们可以利用抓手与环境之间的触觉反馈。在本文中,我们提出了可学习的贝叶斯过滤模型,可以使用触觉反馈来定位机器人抓手。我们提出了一个新颖的观察模型,该模型可以调节环境视觉图上的触觉反馈以及运动模型,以递归估计抓地力的位置。我们的模型接受了自学的模拟培训,并转移到了现实世界中。我们的方法在桌面本地化任务上进行了评估,其中抓手与对象相互作用。我们报告了模拟和真实机器人的结果,并概括了对象的不同尺寸,形状和配置。

Localizing and tracking the pose of robotic grippers are necessary skills for manipulation tasks. However, the manipulators with imprecise kinematic models (e.g. low-cost arms) or manipulators with unknown world coordinates (e.g. poor camera-arm calibration) cannot locate the gripper with respect to the world. In these circumstances, we can leverage tactile feedback between the gripper and the environment. In this paper, we present learnable Bayes filter models that can localize robotic grippers using tactile feedback. We propose a novel observation model that conditions the tactile feedback on visual maps of the environment along with a motion model to recursively estimate the gripper's location. Our models are trained in simulation with self-supervision and transferred to the real world. Our method is evaluated on a tabletop localization task in which the gripper interacts with objects. We report results in simulation and on a real robot, generalizing over different sizes, shapes, and configurations of the objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源