论文标题
与导师一起学习敏捷的运动技巧
Learning Agile Locomotion Skills with a Mentor
论文作者
论文摘要
为腿部机器人开发敏捷行为仍然是一个具有挑战性的问题。尽管深度强化学习是一种有前途的方法,但学习真正敏捷的行为通常需要乏味的奖励成型和仔细的课程设计。我们将敏捷运动作为一个多阶段学习问题,在整个培训中指导代理商。在学生(即机器人)学习到达这些检查点时,指导者将被优化以放置一个检查站,以指导机器人质量中心的运动。一旦学生解决任务,我们就会教学生在没有导师的情况下执行任务。我们使用模拟的四足机器人在一个由随机产生的差距和障碍组成的课程上评估了我们提出的学习系统。我们的方法在没有导师的情况下大大优于单级RL基线,而四倍的机器人可以轻巧地运行并跳过缝隙和障碍。最后,我们对学习行为的可行性和效率进行了详细分析。
Developing agile behaviors for legged robots remains a challenging problem. While deep reinforcement learning is a promising approach, learning truly agile behaviors typically requires tedious reward shaping and careful curriculum design. We formulate agile locomotion as a multi-stage learning problem in which a mentor guides the agent throughout the training. The mentor is optimized to place a checkpoint to guide the movement of the robot's center of mass while the student (i.e. the robot) learns to reach these checkpoints. Once the student can solve the task, we teach the student to perform the task without the mentor. We evaluate our proposed learning system with a simulated quadruped robot on a course consisting of randomly generated gaps and hurdles. Our method significantly outperforms a single-stage RL baseline without a mentor, and the quadruped robot can agilely run and jump across gaps and obstacles. Finally, we present a detailed analysis of the learned behaviors' feasibility and efficiency.