论文标题
视觉运动策略的零射击地形概括
Zero-Shot Terrain Generalization for Visual Locomotion Policies
论文作者
论文摘要
腿部机器人在非结构化的地形上具有无与伦比的移动性。但是,对于可以在各种环境中运行的运动控制器的设计运动控制器仍然是一个开放的挑战。在本文中,我们解决了自动学习运动控制器的挑战,该挑战可以推广到现实世界中经常遇到的各种地形集合。我们将这一挑战视为多任务增强学习问题,并将每个任务定义为机器人需要穿越的一种地形。我们提出了一种端到端的学习方法,该方法可以直接利用从模拟的3D激光雷达传感器收集的原始外部感受的输入,从而避免了对地面真实高度图或感知信息的预处理的需求。结果,学识渊博的控制器具有出色的零拍概括能力,可以在13个不同的环境中浏览,包括楼梯,坚固的土地,混乱的办公室和带人的室内空间。
Legged robots have unparalleled mobility on unstructured terrains. However, it remains an open challenge to design locomotion controllers that can operate in a large variety of environments. In this paper, we address this challenge of automatically learning locomotion controllers that can generalize to a diverse collection of terrains often encountered in the real world. We frame this challenge as a multi-task reinforcement learning problem and define each task as a type of terrain that the robot needs to traverse. We propose an end-to-end learning approach that makes direct use of the raw exteroceptive inputs gathered from a simulated 3D LiDAR sensor, thus circumventing the need for ground-truth heightmaps or preprocessing of perception information. As a result, the learned controller demonstrates excellent zero-shot generalization capabilities and can navigate 13 different environments, including stairs, rugged land, cluttered offices, and indoor spaces with humans.