论文标题
波浪驱动的前苏佩诺娃爆发多样
A Diversity of Wave-driven Pre-supernova Outbursts
论文作者
论文摘要
许多核心溢出的超新星祖细胞显示出增强的苏植物前(SN)质量损失和爆发的迹象,其中一些可以由祖细胞恒星内的波能传输提供动力。根据恒星的结构,由后期核燃烧驱动的对流激发波可以从核心到信封的大量能量,其中波能作为热量消散。我们检查了单星SNE祖细胞中的波能传输过程,质量在$ 11-50 m _ {\ odot} $之间。使用MESA恒星演化模拟,我们将恒星进化直至核心塌陷并计算产生并传输到恒星信封的波能力。与先前的工作相比,这些模型通过合并了更逼真的波谱和非线性阻尼效应,从而改善了先前的努力,从而使我们的波加热估计值减少了$ \ sim $ 1的数量级。我们发现,在氧气/霓虹灯燃烧期间激发的波通常会在0.1-10年以0.1-10年的时间传输$ 10^{46-47} $ erg的能量,然后核心崩溃($ M <30 m_ \ odot $)sn祖细胞。高质量祖细胞通常可以在氧气/霓虹灯燃烧期间传输$ \ sim 10^{47-48} $ erg的能量,但这往往会在核心崩溃前约0.01-0.1年以后发生。前SN爆发可能最为明显,在接受半分级霓虹灯点火的低质量SN祖细胞($ M \ Lessim 12 M_ \ odot $)中,以及在高质量的祖细胞中($ M \ gtrsim 30 m_ \ odot $)展示对流的壳壳合并。
Many core-collapse supernova progenitors show indications of enhanced pre-supernova (SN) mass loss and outbursts, some of which could be powered by wave energy transport within the progenitor star. Depending on the star's structure, convectively excited waves driven by late stage nuclear burning can carry substantial energy from the core to the envelope, where the wave energy is dissipated as heat. We examine the process of wave energy transport in single-star SNe progenitors with masses between $11-50 M_{\odot}$. Using MESA stellar evolution simulations, we evolve stars until core collapse and calculate the wave power produced and transmitted to the stars' envelopes. These models improve upon prior efforts by incorporating a more realistic wave spectrum and non-linear damping effects, reducing our wave heating estimates by $\sim$ 1 order of magnitude compared to prior work. We find that waves excited during oxygen/neon burning typically transmit $10^{46-47}$ erg of energy at 0.1-10 years before core collapse in typical ($M < 30 M_\odot$) SN progenitors. High-mass progenitors can often transmit $\sim 10^{47-48}$ erg of energy during oxygen/neon burning, but this tends to occur later, at about 0.01-0.1 years before core collapse. Pre-SN outbursts may be most pronounced in low-mass SN progenitors ($M \lesssim 12 M_\odot$) undergoing semi-degenerate neon ignition, and in high-mass progenitors ($M \gtrsim 30 M_\odot$) exhibiting convective shell mergers.