论文标题
纳米多孔光子晶体中液体吸收期间散布的前体膜
Precursor Film Spreading during Liquid Imbibition in Nanoporous Photonic Crystals
论文作者
论文摘要
当宏观液滴扩散时,液体的薄前体膜在前进的液体固定蒸气接触线上移动。尽管对平面固体底物进行了广泛的探索,但该现象在纳米结构的几何形状中的存在几乎没有得到研究,尽管它对于许多天然和技术流体运输过程的重要性。在这里,我们使用硅中的多孔光子晶体通过光干扰素毛细管驱动的液体驱动的液体驱动式散布在半径中很少的纳米孔中。在时空重新缩放时,主曲线上的流体曲线崩溃,表明所有吸收前沿均遵循正方形的时空宽扩大动力学。对于简单的液体(甘油),在具有孔径分布的培养基中,在较典型的Lucas-Washburn毛细血管层动力学典型的锋利前部发生。相比之下,对于聚合物(PDMS)而言,前体膜在主要的半月板之前完全改变了纳米级传输的性质,这与计算机模拟的预测一致。
When a macroscopic droplet spreads, a thin precursor film of liquid moves ahead of the advancing liquid-solid-vapor contact line. Whereas this phenomenon has been explored extensively for planar solid substrates, its presence in nanostructured geometries has barely been studied so far, despite its importance for many natural and technological fluid transport processes. Here we use porous photonic crystals in silicon to resolve by light interferometry capillarity-driven spreading of liquid fronts in pores of few nanometers in radius. Upon spatiotemporal rescaling the fluid profiles collapse on master curves indicating that all imbibition fronts follow a square-root-of-time broadening dynamics. For the simple liquid (glycerol) a sharp front with a widening typical of Lucas-Washburn capillary-rise dynamics in a medium with pore-size distribution occurs. By contrast, for a polymer (PDMS) a precursor film moving ahead of the main menisci entirely alters the nature of the nanoscale transport, in agreement with predictions of computer simulations.