论文标题

欧几里得:使用条纹软件在模拟图像中识别小行星条纹

Euclid: Identification of asteroid streaks in simulated images using StreakDet software

论文作者

Pöntinen, M., Granvik, M., Nucita, A. A., Conversi, L., Altieri, B., Auricchio, N., Bodendorf, C., Bonino, D., Brescia, M., Capobianco, V., Carretero, J., Carry, B., Castellano, M., Cledassou, R., Congedo, G., Corcione, L., Cropper, M., Dusini, S., Frailis, M., Franceschi, E., Fumana, M., Garilli, B., Grupp, F., Hormuth, F., Israel, H., Jahnke, K., Kermiche, S., Kitching, T., Kohley, R., Kubik, B., Kunz, M., Laureijs, R., Lilje, P. B., Lloro, I., Maiorano, E., Marggraf, O., Massey, R., Meneghetti, M., Meylan, G., Moscardini, L., Padilla, C., Paltani, S., Pasian, F., Pires, S., Polenta, G., Raison, F., Roncarelli, M., Rossetti, E., Saglia, R., Schneider, P., Secroun, A., Serrano, S., Sirri, G., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Valenziano, L., Wang, Y., Wetzstein, M., Zoubian, J.

论文摘要

ESA Euclid太空望远镜最多可以观察到15万个小行星作为其主要宇宙学任务的副产品。小行星以尾随的来源出现,即图像中的条纹。由于调查区域为15 000平方米,并且必须使用自动化方法来找到它们。 Euclid配备了可见的相机,Vis(Visual Imager)和近红外摄像头NISP(近红外光谱仪和光度计),并带有三个过滤器。 我们旨在开发一条管道来检测具有高完整性和高纯度的欧几里得图像中的快速移动对象。 我们测试了Streakdet软件,以从模拟的欧几里得图像查找小行星。我们优化了StreakDet的参数以最大化完整性,并开发了一种后处理算法,以通过删除假阳性检测率来提高检测到来源样本的纯度。 Streakdet发现了96.9%的合成小行星条纹,其明显幅度明亮,而条纹长度明亮,条纹长度长于15像素($ 10 \,{\ rm arcsec \,h^{ - 1}} $),但这是由于寻找较高的虚假positive的成本而成。通过多污染分析,可以从根本上减少误报的数量,该分析利用了通过Euclid获得的所有四个dither。 Streakdet是识别欧几里得图像中的小行星的好工具,但仍然有改进的空间,特别是找到短的短(少于13个像素,对应于8 $ \,{\ rm arcsec \,h^{ - 1}}} $)和/或/或streaks(Fainter ant ant facearts ant ant faceent ant ant faceent ant ant faceent ant ant faceent ant ant ant ant facearts ant ant ant ant vainter ant an ant Chare of 23)。

The ESA Euclid space telescope could observe up to 150 000 asteroids as a side product of its primary cosmological mission. Asteroids appear as trailed sources, that is streaks, in the images. Owing to the survey area of 15 000 square degrees and the number of sources, automated methods have to be used to find them. Euclid is equipped with a visible camera, VIS (VISual imager), and a near-infrared camera, NISP (Near-Infrared Spectrometer and Photometer), with three filters. We aim to develop a pipeline to detect fast-moving objects in Euclid images, with both high completeness and high purity. We tested the StreakDet software to find asteroids from simulated Euclid images. We optimized the parameters of StreakDet to maximize completeness, and developed a post-processing algorithm to improve the purity of the sample of detected sources by removing false-positive detections. StreakDet finds 96.9% of the synthetic asteroid streaks with apparent magnitudes brighter than 23rd magnitude and streak lengths longer than 15 pixels ($10\,{\rm arcsec\,h^{-1}}$), but this comes at the cost of finding a high number of false positives. The number of false positives can be radically reduced with multi-streak analysis, which utilizes all four dithers obtained by Euclid. StreakDet is a good tool for identifying asteroids in Euclid images, but there is still room for improvement, in particular, for finding short (less than 13 pixels, corresponding to 8$\,{\rm arcsec\,h^{-1}}$) and/or faint streaks (fainter than the apparent magnitude of 23).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源