论文标题

ATCN:边缘的时间序列的资源有效处理

ATCN: Resource-Efficient Processing of Time Series on Edge

论文作者

Baharani, Mohammadreza, Tabkhi, Hamed

论文摘要

本文提出了一个可扩展的深度学习模型,称为敏捷的临时卷积网络(ATCN),用于在资源受限的嵌入式系统中进行高智能的快速分类和时间序列预测。 ATCN是一个紧凑型网络的家族,具有正式的超参数,可以对模型体系结构进行特定于应用程序的调整。它主要是为具有非常有限的性能和内存的嵌入式边缘设备而设计的,例如可穿戴生物医学设备和实时可靠性监视系统。 ATCN对主流时间卷积神经网络进行了基本改进,包括剩余连接以提高网络深度和准确性,并结合可分离的深度范围,以降低模型的计算复杂性。作为当前工作的一部分,还在嵌入式处理器的不同范围内提出和评估了两个ATCN家族-Cortex-M7和Cortex-A57处理器。对ATCN模型的评估是针对一流的启动时间和Minirocket的评估表明,ATCN几乎保持准确性,同时在嵌入式边缘上对实时处理的需求在广泛的嵌入式和网络物理应用上改善执行时间。同时,与现有解决方案相比,ATCN是基于深度学习的第一个时间序列分类器,可以在嵌入式微控制器(Cortex-M7)上裸机地运行,具有有限的计算性能和内存能力,同时提供最先进的精度。

This paper presents a scalable deep learning model called Agile Temporal Convolutional Network (ATCN) for high-accurate fast classification and time series prediction in resource-constrained embedded systems. ATCN is a family of compact networks with formalized hyperparameters that enable application-specific adjustments to be made to the model architecture. It is primarily designed for embedded edge devices with very limited performance and memory, such as wearable biomedical devices and real-time reliability monitoring systems. ATCN makes fundamental improvements over the mainstream temporal convolutional neural networks, including residual connections to increase the network depth and accuracy, and the incorporation of separable depth-wise convolution to reduce the computational complexity of the model. As part of the present work, two ATCN families, namely T0, and T1 are also presented and evaluated on different ranges of embedded processors - Cortex-M7 and Cortex-A57 processor. An evaluation of the ATCN models against the best-in-class InceptionTime and MiniRocket shows that ATCN almost maintains accuracy while improving the execution time on a broad range of embedded and cyber-physical applications with demand for real-time processing on the embedded edge. At the same time, in contrast to existing solutions, ATCN is the first time-series classifier based on deep learning that can be run bare-metal on embedded microcontrollers (Cortex-M7) with limited computational performance and memory capacity while delivering state-of-the-art accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源