论文标题

通过混合监督检测人类对象的相互作用

Detecting Human-Object Interaction with Mixed Supervision

论文作者

Kumaraswamy, Suresh Kirthi, Shi, Miaojing, Kijak, Ewa

论文摘要

人类物体互动(HOI)检测是图像理解和推理中的重要任务。它是一种形式的三胞胎<人类;动词;对象>,需要对人和对象的边界框,以及它们之间的操作以完成任务完成。换句话说,此任务需要在很难采购的情况下进行强有力的培训监督。克服这一点的一种自然解决方案是追求弱监督的学习,我们只知道图像中某些HOI三胞胎的存在,但它们的确切位置尚不清楚。大多数弱监督的学习方法在可用的情况下并没有在强大的监督下提供利用数据;实际上,这两个HOI检测中这两个范式的幼稚组合无法彼此贡献。在这方面,我们提出了一个混合监督的HOI检测管道:由于动量独立学习的特定设计,该设计在这两种类型的监督中无缝学习。此外,鉴于混合监督的注释不足,我们引入了一种HOI元素交换技术,以综合图像之间的多样化和硬质量,并提高模型的鲁棒性。我们的方法在挑战性的HICO-DET数据集上进行了评估。它通过使用大量的强和弱的注释来比许多完全监督的方法接近甚至更好。此外,在相同的监督下,它胜过弱和完全监督的方法的代表性状态。

Human object interaction (HOI) detection is an important task in image understanding and reasoning. It is in a form of HOI triplet <human; verb; object>, requiring bounding boxes for human and object, and action between them for the task completion. In other words, this task requires strong supervision for training that is however hard to procure. A natural solution to overcome this is to pursue weakly-supervised learning, where we only know the presence of certain HOI triplets in images but their exact location is unknown. Most weakly-supervised learning methods do not make provision for leveraging data with strong supervision, when they are available; and indeed a naïve combination of this two paradigms in HOI detection fails to make contributions to each other. In this regard we propose a mixed-supervised HOI detection pipeline: thanks to a specific design of momentum-independent learning that learns seamlessly across these two types of supervision. Moreover, in light of the annotation insufficiency in mixed supervision, we introduce an HOI element swapping technique to synthesize diverse and hard negatives across images and improve the robustness of the model. Our method is evaluated on the challenging HICO-DET dataset. It performs close to or even better than many fully-supervised methods by using a mixed amount of strong and weak annotations; furthermore, it outperforms representative state of the art weakly and fully-supervised methods under the same supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源