论文标题

长游戏和$σ$ -Projective套件

Long Games and $σ$-Projective Sets

论文作者

Aguilera, Juan P., Müller, Sandra, Schlicht, Philipp

论文摘要

我们证明了$σ$ -Projective roeals集的确定性的许多结果,即属于包含开放式集合的最小点级的元素,并在补充,可计数的工会和预测下关闭。我们首先证明了$σ$ -Projective的确定性与某些类别的可变长度游戏游戏的确定性之间的等价性,$ {<}ω^2 $(Theorem 2.4)。然后,我们给出一个基本证明,证明了最佳大型假设(定理4.4)的$σ$ -Projective集的决定性。最后,我们展示了如何概括证明以获取给定可计数长度的$σ$ - 标记游戏的确定性证明,并且从相应的假设(定理5.1和5.4)中获得了包含投影集的最小$σ$ -Algebra的游戏。

We prove a number of results on the determinacy of $σ$-projective sets of reals, i.e., those belonging to the smallest pointclass containing the open sets and closed under complements, countable unions, and projections. We first prove the equivalence between $σ$-projective determinacy and the determinacy of certain classes of games of variable length ${<}ω^2$ (Theorem 2.4). We then give an elementary proof of the determinacy of $σ$-projective sets from optimal large-cardinal hypotheses (Theorem 4.4). Finally, we show how to generalize the proof to obtain proofs of the determinacy of $σ$-projective games of a given countable length and of games with payoff in the smallest $σ$-algebra containing the projective sets, from corresponding assumptions (Theorems 5.1 and 5.4).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源