论文标题

椭圆检测和本地化,并应用于锯切木材图像中的结

Ellipse Detection and Localization with Applications to Knots in Sawn Lumber Images

论文作者

Pan, Shenyi, Fan, Shuxian, Wong, Samuel W. K., Zidek, James V., Rhodin, Helge

论文摘要

尽管一般对象检测取得了巨大进展,但椭圆形对象的定位在文献中很少受到关注。我们激励的应用是检测到锯木图像中的结,这是一个重要的问题,因为结的数量和类型是视觉特征,对锯木材的质量产生不利影响。我们演示了如何针对椭圆形定制模型,从而改善了通用检测器;更一般而言,椭圆形缺陷在工业生产中很常见,例如铸造玻璃或塑料时的封闭气泡。在本文中,我们使用其区域提案网络(RPN)调整了更快的R-CNN,以模拟具有高斯功能的椭圆形对象,并扩展了现有的高斯建议网络(GPN)架构,通过添加利益区域的汇总和回归分支,以及使用wasserstein距离来预测损失的功能,以预测Ellipt eLlipt的损失位置。我们提出的方法在木材结数据集上具有有希望的结果:在平均相交高于73.05%的平均相交中,检测到结,而通用探测器为63.63%。特定于木材应用程序,我们还提出了一种算法,以在扫描过程中纠正原始木材图像中的任何未对准,并通过标记预处理图像中的椭圆结。

While general object detection has seen tremendous progress, localization of elliptical objects has received little attention in the literature. Our motivating application is the detection of knots in sawn timber images, which is an important problem since the number and types of knots are visual characteristics that adversely affect the quality of sawn timber. We demonstrate how models can be tailored to the elliptical shape and thereby improve on general purpose detectors; more generally, elliptical defects are common in industrial production, such as enclosed air bubbles when casting glass or plastic. In this paper, we adapt the Faster R-CNN with its Region Proposal Network (RPN) to model elliptical objects with a Gaussian function, and extend the existing Gaussian Proposal Network (GPN) architecture by adding the region-of-interest pooling and regression branches, as well as using the Wasserstein distance as the loss function to predict the precise locations of elliptical objects. Our proposed method has promising results on the lumber knot dataset: knots are detected with an average intersection over union of 73.05%, compared to 63.63% for general purpose detectors. Specific to the lumber application, we also propose an algorithm to correct any misalignment in the raw timber images during scanning, and contribute the first open-source lumber knot dataset by labeling the elliptical knots in the preprocessed images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源