论文标题

通过深度学习技术的多文章摘要:调查

Multi-document Summarization via Deep Learning Techniques: A Survey

论文作者

Ma, Congbo, Zhang, Wei Emma, Guo, Mingyu, Wang, Hu, Sheng, Quan Z.

论文摘要

多文件摘要(MDS)是信息汇总的有效工具,可从与主题相关的文档群中产生信息和简洁的摘要。我们的调查是系统的第一个调查,概述了最近基于深度学习的MDS模型。我们提出了一种新颖的分类法,以总结神经网络的设计策略,并对最新的制作进行全面摘要。我们强调了现有文献中很少讨论的各种目标函数之间的差异。最后,我们提出了与这个新的令人兴奋的领域有关的几个未来方向。

Multi-document summarization (MDS) is an effective tool for information aggregation that generates an informative and concise summary from a cluster of topic-related documents. Our survey, the first of its kind, systematically overviews the recent deep learning based MDS models. We propose a novel taxonomy to summarize the design strategies of neural networks and conduct a comprehensive summary of the state-of-the-art. We highlight the differences between various objective functions that are rarely discussed in the existing literature. Finally, we propose several future directions pertaining to this new and exciting field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源