论文标题

通过棱镜语言:多尺度语言表示的光谱方法

Language Through a Prism: A Spectral Approach for Multiscale Language Representations

论文作者

Tamkin, Alex, Jurafsky, Dan, Goodman, Noah

论文摘要

语言以不同的规模展示结构,从子词到单词,句子,段落和文档。深层模型在多大程度上捕获了这些量表的信息,我们是否可以强迫它们更好地捕获该层次结构的结构?我们通过关注单个神经元,分析其激活在不同时间尺度的行为来解决这个问题。我们表明,信号处理提供了一个自然框架,可以使我们跨尺度分离结构,从而使我们能够在现有嵌入式中分离量表特定信息和2)训练模型,以了解有关特定尺度的更多信息。具体而言,我们将光谱过滤器应用于跨输入的神经元的激活,产生过滤的嵌入,这些嵌入在语音标记的一部分(文字级别),对话语音语音ACTS分类(Tusterance-level)或主题分类(文档级别)(文档级别),同时在其他任务上表现差。我们还提出了用于训练模型的棱镜层,该模型使用光谱过滤器来约束不同的神经元以在不同尺度上建模结构。我们提出的BERT + PRISM模型可以更好地预测使用远距离上下文的蒙版令牌,并产生在话语和文档级任务中表现更好的多尺度表示。我们的方法是一般的,并且很容易适用于语言,例如图像,音频和视频。

Language exhibits structure at different scales, ranging from subwords to words, sentences, paragraphs, and documents. To what extent do deep models capture information at these scales, and can we force them to better capture structure across this hierarchy? We approach this question by focusing on individual neurons, analyzing the behavior of their activations at different timescales. We show that signal processing provides a natural framework for separating structure across scales, enabling us to 1) disentangle scale-specific information in existing embeddings and 2) train models to learn more about particular scales. Concretely, we apply spectral filters to the activations of a neuron across an input, producing filtered embeddings that perform well on part of speech tagging (word-level), dialog speech acts classification (utterance-level), or topic classification (document-level), while performing poorly on the other tasks. We also present a prism layer for training models, which uses spectral filters to constrain different neurons to model structure at different scales. Our proposed BERT + Prism model can better predict masked tokens using long-range context and produces multiscale representations that perform better at utterance- and document-level tasks. Our methods are general and readily applicable to other domains besides language, such as images, audio, and video.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源