论文标题
$ \ MATHCAL {N} = 2 $一致的截断来自包装的M5-Branes
$\mathcal{N}=2$ consistent truncations from wrapped M5-branes
论文作者
论文摘要
我们讨论了六维歧管上的十一维超级$ M $的一致截断,保留最小的$ \ Mathcal {n} = 2 $ supersymmetry in五个维度。这些基于$ g_s \ subseteq usp(6)$结构的$ e_ {6(6)} $切线捆绑$ m $,因此内在的扭转是常量的$ g_s $ singlet。我们阐明了定义完整的骨截断ansatz的算法,然后将此形式主义应用于包含扭曲的广告$ _5 \ times _ {\ rm w} m $解决方案的一致截断,该截断是由包裹在Riemann表面上的M5-Branes引起的。与$ \ MATHCAL {N} = 2 $ MALDACENA-NUñeZ解决方案相关的广义$ U(1)$结构导致五维超级重力,带有四个矢量多重,一个Hypermultiplet和$ SO(3)\ Times U(3)\ times u(times u(1)\ times \ times \ times \ mathbb {r} $ gemuge组。与“ BBBW”溶液相关的广义结构产生了两个矢量多重组,一个超高级和一个Abelian测量值。我们认为,这些是这种背景上最一致的截断。
We discuss consistent truncations of eleven-dimensional supergravity on a six-dimensional manifold $M$, preserving minimal $\mathcal{N}=2$ supersymmetry in five dimensions. These are based on $G_S \subseteq USp(6)$ structures for the generalised $E_{6(6)}$ tangent bundle on $M$, such that the intrinsic torsion is a constant $G_S$ singlet. We spell out the algorithm defining the full bosonic truncation ansatz and then apply this formalism to consistent truncations that contain warped AdS$_5 \times_{\rm w}M$ solutions arising from M5-branes wrapped on a Riemann surface. The generalised $U(1)$ structure associated with the $\mathcal{N}=2$ solution of Maldacena-Nuñez leads to five-dimensional supergravity with four vector multiplets, one hypermultiplet and $SO(3)\times U(1)\times \mathbb{R}$ gauge group. The generalised structure associated with "BBBW" solutions yields two vector multiplets, one hypermultiplet and an abelian gauging. We argue that these are the most general consistent truncations on such backgrounds.