论文标题
事件集合和顶级质量的参数推断
Parameter Inference from Event Ensembles and the Top-Quark Mass
论文作者
论文摘要
任何粒子对撞机的关键任务之一是测量。实际上,这通常是通过将数据拟合到仿真来完成的,这取决于许多参数。有时,当不同参数的效果高度相关时,可能需要大量的数据集合来解决参数空间变性。一个重要的例子是测量Quark质量,在拟合顶级夸克质量参数时,必须将模拟中的其他物理和非物理参数边缘化。我们比较了三种不同的方法论,用于夸克质量测量:一种经典的直方图拟合程序,类似于实验中常用的一种与软滴射喷气式修饰相似的方法。一种称为DCTR的机器学习方法;以及使用最小二乘拟合或具有密集线性激活的神经网络的线性回归方法。尽管单个事件是完全不相关的,但我们发现,当我们输入以质量分类的事件合奏而不是对单个事件进行训练时,线性回归方法最有效地起作用。尽管所有方法均提供了顶级质量参数的强大提取,但线性网络的确略有略有,并且非常简单。对于顶级研究,我们得出的结论是,可以使用对分类事件集成的网络进行培训的网络,可以显着降低基于蒙特卡洛的基于蒙特卡洛的不确定性(可能是2倍)。更一般而言,用于参数估计的合奏中的机器学习对撞机物理测量具有广泛的潜力。
One of the key tasks of any particle collider is measurement. In practice, this is often done by fitting data to a simulation, which depends on many parameters. Sometimes, when the effects of varying different parameters are highly correlated, a large ensemble of data may be needed to resolve parameter-space degeneracies. An important example is measuring the top-quark mass, where other physical and unphysical parameters in the simulation must be marginalized over when fitting the top-quark mass parameter. We compare three different methodologies for top-quark mass measurement: a classical histogram fitting procedure, similar to one commonly used in experiment optionally augmented with soft-drop jet grooming; a machine-learning method called DCTR; and a linear regression approach, either using a least-squares fit or with a dense linearly-activated neural network. Despite the fact that individual events are totally uncorrelated, we find that the linear regression methods work most effectively when we input an ensemble of events sorted by mass, rather than training them on individual events. Although all methods provide robust extraction of the top-quark mass parameter, the linear network does marginally best and is remarkably simple. For the top study, we conclude that the Monte-Carlo-based uncertainty on current extractions of the top-quark mass from LHC data can be reduced significantly (by perhaps a factor of 2) using networks trained on sorted event ensembles. More generally, machine learning from ensembles for parameter estimation has broad potential for collider physics measurements.