论文标题

量子传播的最大速度

Maximal Speed of Quantum Propagation

论文作者

Arbunich, Jack, Pusateri, Fabio, Sigal, Israel Michael, Soffer, Avraham

论文摘要

对于具有时间独立和时间依赖的Kato电位的Schroedinger方程,我们简单地证明了最大速度结合。后者指出,在半径衰减的时间段衰减时,找到量子系统的可能性是作为时间的逆力。我们就初始条件可用的最大能量给出了相称常数的明确表达。对于相互作用的时间无关的部分,我们既不需要在无穷大也不需要光滑度。

For Schroedinger equations with both time-independent and time-dependent Kato potentials, we give a simple proof of the maximal speed bound. The latter states that the probability to find the quantum system outside the ball of radius proportional to the time lapsed decays as an inverse power of time. We give an explicit expression for the constant of proportionality in terms of the maximal energy available to the initial condition. For the time-independent part of the interaction, we require neither decay at infinity nor smoothness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源