论文标题

增强股票分类的转移陈述

Augmenting transferred representations for stock classification

论文作者

Fons, Elizabeth, Dawson, Paula, Zeng, Xiao-jun, Keane, John, Iosifidis, Alexandros

论文摘要

由于股票回报的高噪声和波动性,股票分类是一项具有挑战性的任务。在本文中,我们表明,使用转移学习可以通过预先培训模型来提取S $ \&$ P500索引的整个股票上的通用功能,然后将其转移到另一个模型以直接学习交易规则。转移的型号比从零训练的对应者的风险调整后收益的两倍多。此外,我们建议在定义为预训练模型的输出的特征空间上使用数据增强(即增加聚合的时间序列表示)。我们将这种增强方法与标准方法进行了比较,即增加输入空间中的时间序列。我们表明,与经过转移学习但没有增强的模型相比,该功能空间上的增强方法会导致风险调整后的收益增加20美元。

Stock classification is a challenging task due to high levels of noise and volatility of stocks returns. In this paper we show that using transfer learning can help with this task, by pre-training a model to extract universal features on the full universe of stocks of the S$\&$P500 index and then transferring it to another model to directly learn a trading rule. Transferred models present more than double the risk-adjusted returns than their counterparts trained from zero. In addition, we propose the use of data augmentation on the feature space defined as the output of a pre-trained model (i.e. augmenting the aggregated time-series representation). We compare this augmentation approach with the standard one, i.e. augmenting the time-series in the input space. We show that augmentation methods on the feature space leads to $20\%$ increase in risk-adjusted return compared to a model trained with transfer learning but without augmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源