论文标题
计算方法和快速混合随机模拟,用于三角测量传感和识别大脑中细胞导航的原理
Computational methods and fast hybrid stochastic simulations for triangulation sensing and identifying principles of cell navigation in the brain
论文作者
论文摘要
布朗模拟可用于生成与研究分子相互作用或贩运相关的统计数据。但是,对许多布朗轨迹的同时模拟在计算上可能会变得棘手。用速率模型替换详细的布朗模拟是吉莱斯皮算法的基础,但要求一个人无视空间信息。但是,此信息对于分子和细胞生物学至关重要。另外,人们可以使用混合方法,仅在空间组织相关的小区域中产生布朗路径,并在其余的域中避免使用。在这里,我们回顾了通过外部化学梯度在细胞传感和引导的背景下,混合方法和模拟的最新进展。具体而言,我们突出显示了到达牢房上狭窄窗口的扩散通量中点源位置的2D和3D位置的重建。我们讨论了这些窗口位于2D或3D半空间边界的情况,在自由空间,2D走廊或3D球内的磁盘上。所讨论的混合方法仅在感兴趣的区域内进行布朗模拟。它使用Neumann-Green的函数为上述几何形状使用时,在轨迹离开区域时生成精确的映射出口和进入点,从而避免了无限域中布朗路径的明确计算。匹配的渐近学用于计算小窗口的概率通量,我们回顾如何使用这种方法来重建点源的位置,并估计由于磁通量中存在的添加剂扰动而导致的源重建中的不确定性。我们还回顾了各种窗口配置对源位置恢复的影响。最后,我们讨论了发育细胞生物学和可能的计算原理中的潜在应用。
Brownian simulations can be used to generate statistics relevant for studying molecular interactions or trafficking. However, the concurrent simulation of many Brownian trajectories at can become computationally intractable. Replacing detailed Brownian simulations by a rate model was the basis of Gillespie's algorithm, but requires one to disregard spatial information. However, this information is crucial in molecular and cellular biology. Alternatively one can use a hybrid approach, generating Brownian paths only in a small region where the spatial organization is relevant and avoiding it in the remainder of the domain. Here we review the recent progress of hybrid methods and simulations in the context of cell sensing and guidance via external chemical gradients. Specifically, we highlight the reconstruction of the location of a point source in 2D and 3D from diffusion fluxes arriving at narrow windows located on the cell. We discuss cases in which these windows are located on the boundary of the 2D or 3D half-space, on a disk in free space, inside a 2D corridor, or a 3D ball. The hybrid method in question performs Brownian simulations only inside a region of interest. It uses the Neumann-Green's function for the mentioned geometries to generate exact mappings exit and entry points when the trajectory leaves the region, thus avoiding the explicit computation of Brownian paths in an infinite domain. Matched asymptotics is used to compute the probability fluxes to small windows and we review how such an approach can be used to reconstruct the location of a point source and estimating the uncertainty in the source reconstruction due to an additive perturbation present in the fluxes. We also review the influence of various window configurations on the source position recovery. Finally, we discuss potential applications in developmental cell biology and possible computational principles.