论文标题

确定性分布式顶点着色:更简单,更快,没有网络分解

Deterministic Distributed Vertex Coloring: Simpler, Faster, and without Network Decomposition

论文作者

Ghaffari, Mohsen, Kuhn, Fabian

论文摘要

我们提出了一种简单的确定性分布式算法,该算法计算$ O(\ log^2Δ\ cdot \ log n)$ roughs中的$(δ+1)$ - 顶点着色。可以使用$ O(\ log n)$ - 位消息实现该算法。该算法也可以扩展到更通用的$(度+1)$ - 列表着色问题。 自1980年代以来,在分布式图算法的领域中,以$(δ+1)$(δ+1)$(δ+1)$(δ+1)$(δ+1)的确定性算法一直是一个核心问题,直到最近的网络分解算法是Rozhoň和Ghaffari [Stoc'20]。目前的艺术状态基于其分解的改进变体,这导致$ O(\ log^5 n)$ - 圆形算法,$(δ+1)$ - 顶点颜色。 我们的着色算法是完全不同的,并且更简单,更快。它通过逐渐舍入某个部分颜色分配,直到达到积分颜色分配,以直接方式解决着色问题,而无需使用网络分解。此外,通过Chang,Li和Pettie [Stoc'18]的方法,这改进了确定性算法,还可以改善$(δ+1)$ - 着色的随机算法的复杂性,现在达到了$ O(\ log log^log^3 \ log n)$ nounds $。 作为进一步的应用程序,我们还为顶点着色问题的以下变体提供了更快的确定性分布式算法。在Arboricity $ a $的图表中,我们表明$(2+ε)可以以$ o(\ log^3 a \ cdot \ log n)$ rounds计算$ vertex着色。我们还表明,对于$δ\ geq 3 $,可以以$ o(\ log^2δ\ cdot \ log^2 n)$ rounds计算$δ$ - 可油的$δ$颜色。

We present a simple deterministic distributed algorithm that computes a $(Δ+1)$-vertex coloring in $O(\log^2 Δ\cdot \log n)$ rounds. The algorithm can be implemented with $O(\log n)$-bit messages. The algorithm can also be extended to the more general $(degree+1)$-list coloring problem. Obtaining a polylogarithmic-time deterministic algorithm for $(Δ+1)$-vertex coloring had remained a central open question in the area of distributed graph algorithms since the 1980s, until a recent network decomposition algorithm of Rozhoň and Ghaffari [STOC'20]. The current state of the art is based on an improved variant of their decomposition, which leads to an $O(\log^5 n)$-round algorithm for $(Δ+1)$-vertex coloring. Our coloring algorithm is completely different and considerably simpler and faster. It solves the coloring problem in a direct way, without using network decomposition, by gradually rounding a certain fractional color assignment until reaching an integral color assignments. Moreover, via the approach of Chang, Li, and Pettie [STOC'18], this improved deterministic algorithm also leads to an improvement in the complexity of randomized algorithms for $(Δ+1)$-coloring, now reaching the bound of $O(\log^3\log n)$ rounds. As a further application, we also provide faster deterministic distributed algorithms for the following variants of the vertex coloring problem. In graphs of arboricity $a$, we show that a $(2+ε)a$-vertex coloring can be computed in $O(\log^3 a\cdot\log n)$ rounds. We also show that for $Δ\geq 3$, a $Δ$-coloring of a $Δ$-colorable graph $G$ can be computed in $O(\log^2 Δ\cdot\log^2 n)$ rounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源