论文标题

扩散求解器:基于fenics的扩散 - 方程求解器

Diffusive solver: a diffusion-equations solver based on FEniCS

论文作者

Torre, Iacopo

论文摘要

凝结物理学中的许多稳态运输问题可以简化为一组耦合扩散方程。当放松过程足够快,以使系统处于扩散(弹道式)状态时,这是正确的。在这里,我们描述了一个基于Fenics的Python软件包,该软件包以任意数量的自由度来解决这种类型的问题,可以代表电荷,旋转,能量,带,带或山谷风味。从解决方案中自动计算了系统对外部偏见和来源的线性响应的全面电导率和疾病。我们解决了两个简单的磁电流和热电传输的简单示例,以实现说明目的。

Many steady-state transport problems in condensed matter physics can be reduced to a set of coupled diffusion equations. This is true in particular when relaxation processes are sufficiently fast that the system is in the diffusive --opposite of ballistic-- regime. Here we describe a python package, based on FEniCS, that solves this type of problems with an arbitrary number degrees of freedom that can represent charge, spin, energy, band or valley flavours. Generalized conductivities and responsivities, characterizing completely the linear response of the system to external biases and sources, are automatically computed from the solutions. We solve two simple example of magneto-transport and thermoelectric transport for illustrative purpose.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源