论文标题
Deconfuse:基于无监督的融合融合框架的深度卷积转换框架
DeConFuse : A Deep Convolutional Transform based Unsupervised Fusion Framework
论文作者
论文摘要
这项工作提出了一个基于深层卷积转换学习的无监督融合框架。卷积过滤器进行数据分析的出色学习能力得到了很好的认可。卷积神经网络(CNN)的成功率特征的成功。但是,CNN无法以无监督的方式执行学习任务。在最近的一项工作中,我们表明,可以通过采用卷积转换学习(CTL)方法来解决这种缺点,在这种方法中,以无监督的方式学习了卷积过滤器。本文的目的是(i)提出了CTL的深刻版本; (ii)提出一种利用拟议的深CTL表示的无监督融合配方; (iii)制定用于执行学习任务的数学听起来的优化策略。我们将拟议的技术(名为Deconfuse)应用于预测和交易的问题。与最先进的方法(基于CNN和长期短期内存网络)的比较显示了我们执行可靠特征提取的方法的优越性。
This work proposes an unsupervised fusion framework based on deep convolutional transform learning. The great learning ability of convolutional filters for data analysis is well acknowledged. The success of convolutive features owes to convolutional neural network (CNN). However, CNN cannot perform learning tasks in an unsupervised fashion. In a recent work, we show that such shortcoming can be addressed by adopting a convolutional transform learning (CTL) approach, where convolutional filters are learnt in an unsupervised fashion. The present paper aims at (i) proposing a deep version of CTL; (ii) proposing an unsupervised fusion formulation taking advantage of the proposed deep CTL representation; (iii) developing a mathematically sounded optimization strategy for performing the learning task. We apply the proposed technique, named DeConFuse, on the problem of stock forecasting and trading. Comparison with state-of-the-art methods (based on CNN and long short-term memory network) shows the superiority of our method for performing a reliable feature extraction.