论文标题

使用渐进式屏障和概率估计的限制随机黑框优化

Constrained stochastic blackbox optimization using a progressive barrier and probabilistic estimates

论文作者

Dzahini, Kwassi Joseph, Kokkolaras, Michael, Digabel, Sébastien Le

论文摘要

这项工作介绍了用于约束随机黑框优化的Stomads-PB算法,这是最初在一般约束下为确定性黑框优化开发的网格自适应直接搜索(MADS)方法的扩展。客观和约束函数的值由嘈杂的黑框提供,即,它们只能用随机噪声来计算,其分布未知。与MAD一样,违反约束违规函数被汇总为单一的约束函数。由于所有函数值在数值上都是不可用的,因此Stomads-PB使用估计值,并引入所谓的概率界限以进行违规。从随机观测中获得的这种估计和边界必须具有较高但固定概率的准确和可靠。所提出的方法允许中间的不可行的迭代,它使用足够的减少条件接受新点,并在概率边界上施加阈值。使用Clarke非平滑微积分和Martingale理论,以概率为单位得出了目标和违规函数的Clarke Sentarity收敛结果。

This work introduces the StoMADS-PB algorithm for constrained stochastic blackbox optimization, which is an extension of the mesh adaptive direct-search (MADS) method originally developed for deterministic blackbox optimization under general constraints. The values of the objective and constraint functions are provided by a noisy blackbox, i.e., they can only be computed with random noise whose distribution is unknown. As in MADS, constraint violations are aggregated into a single constraint violation function. Since all functions values are numerically unavailable, StoMADS-PB uses estimates and introduces so-called probabilistic bounds for the violation. Such estimates and bounds obtained from stochastic observations are required to be accurate and reliable with high but fixed probabilities. The proposed method, which allows intermediate infeasible iterates, accepts new points using sufficient decrease conditions and imposing a threshold on the probabilistic bounds. Using Clarke nonsmooth calculus and martingale theory, Clarke stationarity convergence results for the objective and the violation function are derived with probability one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源