论文标题
几何结构辅助视觉惯性定位
Geometric Structure Aided Visual Inertial Localization
论文作者
论文摘要
视觉定位是自主导航中必不可少的组成部分。现有方法是基于SLAM/SFM的视觉结构,也可以基于密集映射的几何结构。为了使这两者的优势在这项工作中,我们基于混合图表示,提出了一个完整的视觉惯性定位系统,以降低计算成本并提高定位准确性。特别是,我们分别提出了两个用于数据关联和批处理优化的模块。为此,我们开发了一个有效的数据关联模块,以将地图组件与本地功能相关联,该模块仅需$ 2 $ MS即可生成时间标记。为了优化批处理,我们不使用视觉因素,而是开发一个模块来估算即时定位结果的先验姿势以限制姿势。 Euroc MAV数据集的实验结果与艺术状态相比表明了竞争性能。特别是,我们的系统在1.7厘米处达到平均位置误差,召回100%。时间表表明,所提出的模块将计算成本降低了20-30%。我们将在http://github.com/hyhuang1995/gmmloc上进行实施开源。
Visual Localization is an essential component in autonomous navigation. Existing approaches are either based on the visual structure from SLAM/SfM or the geometric structure from dense mapping. To take the advantages of both, in this work, we present a complete visual inertial localization system based on a hybrid map representation to reduce the computational cost and increase the positioning accuracy. Specially, we propose two modules for data association and batch optimization, respectively. To this end, we develop an efficient data association module to associate map components with local features, which takes only $2$ms to generate temporal landmarks. For batch optimization, instead of using visual factors, we develop a module to estimate a pose prior from the instant localization results to constrain poses. The experimental results on the EuRoC MAV dataset demonstrate a competitive performance compared to the state of the arts. Specially, our system achieves an average position error in 1.7 cm with 100% recall. The timings show that the proposed modules reduce the computational cost by 20-30%. We will make our implementation open source at http://github.com/hyhuang1995/gmmloc.