论文标题

通过注意网络对电子商务查询细分的遥远监督

Distant Supervision for E-commerce Query Segmentation via Attention Network

论文作者

Li, Zhao, Ding, Donghui, Zou, Pengcheng, Gong, Yu, Chen, Xi, Zhang, Ji, Gao, Jianliang, Wu, Youxi, Duan, Yucong

论文摘要

蓬勃发展的在线电子商务平台需要高度准确的方法来分割消费者的产品要求。最近的作品表明,监督的方法,尤其是基于深度学习的方法,对于在查询细分问题上取得更好的绩效具有吸引力。但是,缺乏标记的数据仍然是训练深度分割网络的巨大挑战,而播出率(OOV)的问题也对查询细分的性能产生了不利影响。与开放域中的查询细分任务不同,电子商务方案可​​以提供与这些查询密切相关的外部文档。因此,为了应对这两个挑战,我们采用了遥远的监督和设计一种新颖的方法来查找外部文档中的上下文,并从这些上下文中提取特征。在这项工作中,我们提出了一个基于Bilstm-CRF的模型,该模型具有一个注意模块来编码外部功能,以便可以自然而有效地利用外部上下文信息来帮助查询细分。与几种基线相比,两个数据集上的实验显示了我们方法的有效性。

The booming online e-commerce platforms demand highly accurate approaches to segment queries that carry the product requirements of consumers. Recent works have shown that the supervised methods, especially those based on deep learning, are attractive for achieving better performance on the problem of query segmentation. However, the lack of labeled data is still a big challenge for training a deep segmentation network, and the problem of Out-of-Vocabulary (OOV) also adversely impacts the performance of query segmentation. Different from query segmentation task in an open domain, e-commerce scenario can provide external documents that are closely related to these queries. Thus, to deal with the two challenges, we employ the idea of distant supervision and design a novel method to find contexts in external documents and extract features from these contexts. In this work, we propose a BiLSTM-CRF based model with an attention module to encode external features, such that external contexts information, which can be utilized naturally and effectively to help query segmentation. Experiments on two datasets show the effectiveness of our approach compared with several kinds of baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源