论文标题
在竞争中最终僵硬且结构强的材料
On the competition for ultimately stiff and strong architected materials
论文作者
论文摘要
现在,制造技术的进步可能实际上可以实现任何可想象的微观结构,为具有属性的构建材料铺平了道路。这导致了通过精心设计的超材料在物业空间中缩小差距的寻求问题。机械超材料的开发已从开放的桁架晶格结构转变为刚度接近理论界限的封闭板晶格结构。但是,对最佳僵硬和强大的材料的追求很复杂。板晶格结构具有更高的刚度和(屈服)强度,但容易在低体积分数下屈曲。因此,在这里,桁架晶格结构仍然可能是最佳的。为了使事情变得更加复杂,空心桁架或结构性层次结构将封闭的微观结构带回了比赛中。基于文献中常见微观结构的分析和数值研究,我们为其有效的刚度和(屈曲)强度提供了高阶插值方案。此外,我们提供了一个基于弯曲下重量优势多孔光束的多纹章Ashby图表的案例研究,该图证明了结构和微结构之间的复杂相互作用,这些相互作用在最终承载结构的设计中起着关键作用。所提供的插值方案也可用于说明多尺度设计优化方案中的微观结构产量和屈曲。
Advances in manufacturing techniques may now realize virtually any imaginable microstructures, paving the way for architected materials with properties beyond those found in nature. This has lead to a quest for closing gaps in property-space by carefully designed metamaterials. Development of mechanical metamaterials has gone from open truss lattice structures to closed plate lattice structures with stiffness close to theoretical bounds. However, the quest for optimally stiff and strong materials is complex. Plate lattice structures have higher stiffness and (yield) strength but are prone to buckling at low volume fractions. Hence here, truss lattice structures may still be optimal. To make things more complicated, hollow trusses or structural hierarchy bring closed-walled microstructures back in the competition. Based on analytical and numerical studies of common microstructures from the literature, we provide higher order interpolation schemes for their effective stiffness and (buckling) strength. Furthermore, we provide a case study based on multi-property Ashby charts for weight-optimal porous beams under bending, that demonstrates the intricate interplay between structure and microarchitecture that plays the key role in the design of ultimate load carrying structures. The provided interpolation schemes may also be used to account for microstructural yield and buckling in multiscale design optimization schemes.