论文标题
复杂的几何形状中过滤的一个赋值内结构
Filtered A-infinity structures in complex geometry
论文作者
论文摘要
我们证明了同型转移定理的过滤版本,该版本在与过滤后的DG-Algebra相关的光谱序列的任何页面上提供了一个赋值代数结构。然后,我们使用混合的霍奇理论,使用霍奇过滤以及复杂的代数品种开发了各种应用于复杂歧管的几何形状和拓扑结构的研究和复杂歧管的拓扑。
We prove a filtered version of the Homotopy Transfer Theorem which gives an A-infinity algebra structure on any page of the spectral sequence associated to a filtered dg-algebra. We then develop various applications to the study of the geometry and topology of complex manifolds, using the Hodge filtration, as well as to complex algebraic varieties, using mixed Hodge theory