论文标题
$ \ Mathcal {s}_Ω(\ Mathbb {r}^n)$上的乘数
Multipliers on $\mathcal{S}_ω(\mathbb{R}^N)$
论文作者
论文摘要
本文的目的是介绍和研究空间的空间$ \ MATHCAL {o} _ {M,ω}(\ Mathbb {r}^n)$的乘以$ \ MATHCAL {s} s}_Ω(\ Mathbb {\ Mathbb {r}^n)$的$ω$ -Umy-um-ultradifferty y y Mathcal {s}_Ω我们确定空间的各种属性$ \ MATHCAL {O} _ {M,ω}(\ Mathbb {r}^n)$。此外,我们定义并比较了一些LC-TOMOGION,其中$ \ Mathcal {O} _ {M,ω}(\ Mathbb {r}^n)$可以自然地被赋予。
The aim of this paper is to introduce and to study the space $\mathcal{O}_{M,ω}(\mathbb{R}^N)$ of the multipliers of the space $\mathcal{S}_ω(\mathbb{R}^N)$ of the $ω$-ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space $\mathcal{O}_{M,ω}(\mathbb{R}^N)$. Moreover, we define and compare some lc-topologies of which $\mathcal{O}_{M,ω}(\mathbb{R}^N)$ can be naturally endowed.