论文标题
完美的Shimura品种和Calegari-Emerton猜想
Perfectoid Shimura varieties and the Calegari-Emerton conjectures
论文作者
论文摘要
我们证明了许多新的猜想Calegari-Emerton的猜想,描述了完整的同种学的定性特性。我们论点的核心是对Borel-Serre边界上完整的共同体学进行仔细的归纳分析。作为这种归纳的关键输入,我们证明了最低限度压实的shimura the the-Abelian类型的Shimura品种的新完美素能,从而概括了Scholze的先前工作。
We prove many new cases of a conjecture of Calegari-Emerton describing the qualitative properties of completed cohomology. The heart of our argument is a careful inductive analysis of completed cohomology on the Borel-Serre boundary. As a key input to this induction, we prove a new perfectoidness result for towers of minimally compactified Shimura varieties of pre-abelian type, generalizing previous work of Scholze.