论文标题

Bott-Cattaneo-Rossi不变式在渐近同源性$ \ mathbb r^3 $

Bott-Cattaneo-Rossi invariants for long knots in asymptotic homology $\mathbb R^3$

论文作者

Leturcq, David

论文摘要

在本文中,我们表达了亚历山大多项式的null同源长结的多项式。为了获得这样的表达,我们使用先前建立的公式,该公式将广义的bott-cattaneo-rossi不变式根据亚历山大多项式而言,反之亦然,我们将这些bott-cattaneo-rossi不变性与Chern-Simons理论的扰动扩展联系起来。

In this article, we express the Alexander polynomial of null-homologous long knots in punctured rational homology $3$-spheres in terms of integrals over configuration spaces. To get such an expression, we use a previously established formula, which gives generalized Bott-Cattaneo-Rossi invariants in terms of the Alexander polynomial and vice versa, and we relate these Bott-Cattaneo-Rossi invariants to the perturbative expansion of Chern-Simons theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源